Effect of pressure on the Curie temperature of single-crystal UGe₂

K. Nishimura^a, G. Oomi^a, S.W. Yun^b and Y. Ōnuki^b

^aDepartment of Physics, Faculty of General Education, Kumamoto University, Kumamoto 860 (Japan) ^bInstitute of Materials Science, University of Tsukuba, Ibaraki 305 (Japan)

Abstract

The linear thermal expansion of single-crystal UGe₂ has been measured in the temperature range 4.2 K < T < 300 K under high pressure up to 20 kbar. The linear thermal expansion coefficient α_i (K⁻¹) (*i=a, b* and *c*) exhibits a discontinuity near 50 K and a large anisotropy, which corresponds to ferromagnetic order. The discontinuous changes in the values of α_a , α_b and α_c at T_C are 25×10^{-6} K⁻¹, 40×10^{-6} K⁻¹ and -10×10^{-6} K⁻¹ respectively. It is found that T_C decreases with increasing pressure and becomes lower than 4.2 K at 20 kbar. The initial decreasing rate of T_C was estimated to be $dT_C/dP = -0.7$ K kbar⁻¹. The data are analysed briefly by assuming a weak ferromagnetic theory.

1. Introduction

Uranium compounds are well known to have 5f electrons exhibiting an intermediate character between the localized 4f electron system and the itinerant d electron system and to display heavy fermion behaviour. Application of pressure changes drastically the electronic state of these compounds because the hybridization between f electron states and the conduction band increases with a decrease in interatomic spacing [1, 2].

UGe₂ has an orthorhombic crystal structure having lattice constants a = 4.09 Å, b = 15.20 Å and c = 3.96 Å [3]. It was reported that UGe₂ is a ferromagnetic compound with Curie temperature $T_{\rm C} = 52$ K and its physical behaviour exhibits a large anisotropy reflecting the non-cubic crystal structure [3].

In the present work we made an attempt to measure the thermal expansion $\Delta l/l$ and its temperature coefficient α (K⁻¹) of single-crystal UGe₂ under hydrostatic pressure up to 20 kbar in order to examine an instability of the ferromagnetism at high pressure.

2. Experimental procedure

Single-crystal UGe₂ was grown by a Czochralski pulling method. The details of sample preparation and characterization were reported elsewhere [3]. Thermal expansion was measured in the temperature range between 4.2 K and 300 K by means of strain gauge method (Kyowa Dengyo KFL-02-C1-11) [4]. The strain gauge was glued on a clean surface of the specimen in the direction parallel to each crystal axis (a, b and c axes). Copper (99.999%) was used as a reference material. We observed a difference in length between Cu and UGe₂. The hydrostatic pressure was generated by the piston-cylinder method up to 20 kbar. The pressure transmitting medium is a mixture of Fluorinert FC70 and FC77. The details of the high pressure apparatus were reported previously [5].

3. Results and discussion

Figure 1 shows the temperature dependence of the linear thermal expansion $(\Delta l/l)_a$, $(\Delta l/l)_b$ and $(\Delta l/l)_c$ along the *a*, *b* and *c* axes at ambient pressure. $(\Delta l/l)_a$ decreases gradually with decreasing temperature, but it begins

Fig. 1. Temperature dependence of linear thermal expansion $(\Delta l/l)_a$, $(\Delta l/l)_b$ and $(\Delta l/l)_c$ of single-crystal UGe₂ at ambient pressure. The Curie temperature $T_{\rm C}$ is shown by an arrow.

to increase around 50 K ($T_{\rm C}$). The anomalous increase is due to the ferromagnetic order. Below $T_{\rm C}$, a small knee is observed around 25 K, which was also observed in the temperature dependence of thermoelectric power and electrical resistivity [3]. The temperature dependence of $(\Delta l/l)_b$ is almost the same as that of $(\Delta l/l)_a$ except for a broad maximum around 30 K. In the case of the *c* axis, the behaviour is different from those of the *a* and *b* axes below $T_{\rm C}$, reflecting the orthorhombic crystal structure. Below 50 K, $(\Delta l/l)_c$ decreases with decreasing temperature.

We show in Fig. 2 the linear thermal expansion $(\Delta l/l)_c$ at high pressure. The anomaly due to ferromagnetic ordering becomes less prominent on application of pressure and then T_c also decreases.

Figure 3 shows the temperature dependence of the linear thermal expansion coefficient α_c under high pressure. α_c was obtained by differentiating $(\Delta l/l)_c$ with respect to T. On ferromagnetic transition, α_c increases discontinuously with $\Delta \alpha_c = -10 \times 10^{-6} \text{ K}^{-1}$ at ambient pressure. At 20 kbar, no anomaly is found both in the

Fig. 2. Linear thermal expansion $(\Delta l/l)_c$ along the c axis as a function of temperature at various pressures. The Curie temperature T_c is shown by an arrow.

Fig. 3. Temperature dependence of linear thermal expansion coefficient α_c under high pressures.

thermal expansion and in the thermal expansion coefficient. This implies that $T_{\rm C}$ is lower than 4.2 K at 20 kbar.

To examine the temperature dependence of volume change, we calculate the fractional change $\omega \equiv \Delta V/V$ in volume as a function of temperature. ω is obtained from the following relation:

$$\omega \equiv \Delta V/V = (\Delta l/l)_a + (\Delta l/l)_b + (\Delta l/l)_c \tag{1}$$

The above relation is easily derived by using $V = l_a l_b l_c$. ω is shown in Fig. 4 as a function of temperature at various pressures. Although ω decreases with decreasing temperature, it begins to increase below T_c . The volume expansion is due to the spontaneous magnetization below T_c . To obtain the spontaneous volume magnetostriction $\omega_s(T)$, we estimate the volume in the paramagnetic state by fitting the data of $\omega(T > T_c)$ to the equation

$$\omega_{\text{para}}(T) = aT^2 + bT^4 \tag{2}$$

 $\omega_{\rm s}(T)$ is obtained by using the relation $\omega_{\rm s}(T) = \omega(T) - \omega_{\rm para}(T)$. $T_{\rm C}$ is defined as the temperature at which $\omega(T)$ deviates from $\omega_{\rm para}(T)$.

We show in Fig. 5 the temperature dependence of ω_s under high pressure. The value of ω_s at ambient pressure is 1.23×10^{-3} at 0 K, which is smaller than that of Fe–Ni, or Fe–Pt Invar alloys (see for example ref. 6) and YMn₂ [7] by an order of magnitude. It is found that ω_s decreases on application of pressure and disappears above 20 kbar. Such behaviour was observed also in Invar alloys [8] and YMn₂ [9].

Figure 6 shows the pressure dependence of $T_{\rm C}$. In the pressure range below 15 kbar, $T_{\rm C}$ decreases gradually with increasing pressure with the initial decreasing rate $\partial T_{\rm C}/\partial P = -0.7$ K kbar⁻¹. Above 15 kbar, $T_{\rm C}$ decreases rapidly with pressure. No discontinuous change in volume near $T_{\rm C}$ is observed at 20 kbar within experimental

Fig. 4. Fractional change $\omega \equiv \Delta V/V$ in the volume as a function of temperature under high pressure. The Curie temperature $T_{\rm C}$ is shown by an arrow.

Fig. 5. Temperature dependence of spontaneous magnetostriction ω_s under high pressure.

Fig. 6. Pressure dependence of Curie temperature T_C : ----, guide for the eye.

error. It is well known that the following expression is applicable for the pressure dependence of $T_{\rm C}$ of a weak ferromagnet [10]:

$$\left[\frac{T_{\rm C}(P)}{T_{\rm C}(0)}\right]^2 = 1 - \frac{P}{P_{\rm c}}$$
(3)

where $T_{\rm C}(0)$ is $T_{\rm C}$ at ambient pressure and $P_{\rm c}$ is the critical pressure above which the system becomes paramagnetic.

Figure 7 shows the result of least-squares fitting of the observed data to eqn. (3). By taking $T_{\rm C}(0) = 51.6$ K and $P_c = 21.7$ kbar, the present data are fitted well. Thus the pressure dependence of $T_{\rm C}$ is interpreted by the weak ferromagnetic model.

Finally we comment on the pressure dependence of T_C by using the Ehrenfest relation $dT_C/dP = TV \Delta \alpha / \Delta C$, where ΔC is the discontinuity in the specific heat at T_C . By substituting the observed value of $\Delta \alpha = 40 \times 10^{-6} \text{ K}^{-1}$ and $\Delta C = -6 \text{ J mol}^{-1} \text{ K}^{-1}$ [3], we

Fig. 7. Least-squares fitting of the present data to eqn. (3).

obtain $dT_C/dP = -1.2$ K kbar⁻¹. The estimated value of dT_C/dP is comparable with the observed value of -0.7 K kbar⁻¹.

4. Conclusion

We measured the thermal expansion of single-crystal UGe_2 under high pressure. The main results are summarized as follows.

(1) The thermal expansion coefficients α_i (*i*=*a*, *b* and *c*) exhibit discontinuities at T_c owing to ferromagnetic ordering.

(2) A clear magnetovolume effect is observed with the magnitude of spontaneous volume magnetostriction $\omega_{\rm s}(0)$ at 0 K being 1.23×10^{-3} .

(3) The spontaneous volume magnetostriction ω_s decreases on applying pressure and disappears above 20 kbar.

(4) $T_{\rm C}$ decreases with increasing pressure with initial slope $\partial T_{\rm C}/\partial P = -0.7$ K kbar⁻¹.

Acknowledgment

One of the authors (K.N.) heartily thanks Ms. T. Kagayama for her valuable advice, kind assistance in analysing the data and critical reading of the manuscript.

References

- 1 K. Iki, G. Oomi and Y. Uwatoko, J. Alloys Comp., 181 (1992) 71.
- 2 M.C. Aronson, J.D. Thompson, J.L. Smith, Z. Fisk and W. McElfresh, Phys. Rev. Lett., 63 (1989) 2311.
- 3 Y. Onuki, I. Ukon, S.W. Yun, I. Umehara, K. Satoh, T. Fukuhara, H. Sato, S. Takayanagi, M. Shikama and H. Ochiai, J. Phys. Soc. Jpn., 61 (1992) 293.

- 4 G. Oomi, T. Kagayama, Y. Önuki and T. Komatsubara, *Physica B, 163* (1990) 557.
 5 G. Oomi, T. Kagayama and Y. Uwatoko, *Jpn. J. Appl. Phys.*, 22 (1992) 2112
- 32 (1993) 349.
- 6 H. Fujimori, in H. Saito (ed.), Physics and Applications of Invar Alloys, Honda Memorial Series on Material Science, No. 3, Maruzen, Tokyo, 1978, p. 99.
- 7 Y. Tagawa, H. Sakurai, Y. Komura, H. Wada, M. Shiga and Y. Nakamura, J. Phys. Soc. Jpn., 54 (1985) 591.
- 8 G. Oomi and N. Möri, J. Phys. Soc. Jpn., 50 (1981) 2924.
- 9 G. Oomi, T. Terada, M. Shiga and Y. Nakamura, J. Magn. Magn. Mater., 70 (1987) 137.
- 10 E.P. Wohlfarth, J. Magn. Magn. Mater., 10 (1979) 120.